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1. Introduction

In four dimensions the topology of the event horizon of an asymptotically flat stationary

black hole is uniquely determined to be the two-sphere S2 [1].1 Hawking’s theorem [1]

requires the integrated Ricci scalar curvature with respect to the induced metric on the

event horizon to be positive. This condition applied to two-dimensional manifolds deter-

mines uniquely the topology.

Another way to determine the topology of the event horizon is via the so called topo-

logical censorship [2]. Mathematically it requires the horizon to be cobordant to a sphere

via a simply connected oriented cobordism. For a two-dimensional horizon it means that

there is a simply connected three-dimensional oriented manifold whose boundary is the

oriented disjoint union of the horizon and the two-sphere. Topological censorship implies

that the topology of the event horizon is that of the two-sphere S2 [3].

The classification of the topology of the event horizons in higher dimensions is more

complicated [4]. For instance, for five-dimensional asymptotically flat stationary black

holes, in addition to the known S3 topology of event horizons, stationary black hole solu-

tions with event horizons of S2 × S1 topology (Black Rings) have been constructed [5].

In this letter we will consider the topology of event horizons in dimensions higher

than four. First, we reconsider Hawking’s theorem [1] and show it continues to hold

in higher dimensions. Using this and Thurston’s geometric types classification of three-

manifolds [6, 7], we find that if the induced metric on the horizon is locally homogeneous,

the only possible geometric types of event horizons in five dimensions are S3 and S2 × S1

(for a related discussion see [8]). These geometric types may give rise to horizon topologies

which are quotients of them by discrete subgroups of the isometry group.

In six dimensions we use the requirement that the horizon is cobordant to a four-sphere,

Friedman’s classification of topological four-manifolds and Donaldson’s results on smooth

1We consider the connected part of the event horizons.
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four-manifolds, and show that simply connected event horizons are homeomorphic to S4

or S2×S2. We find allowed non-simply connected event horizons S3 ×S1 and S2 ×Σg (Σg

is a genus g Riemann surface), and event horizons with finite non-abelian first homotopy

group, whose universal cover is S4. Finally, we will discuss the classification in dimensions

higher than six.

The letter is organized as follows. In section 2 we will reconsider the positivity theorem

of [1]. Following the steps of the proof in four dimensions we will find that it holds also

for asymptotically flat stationary black holes in dimensions higher than four. In section 3,

we will consider the condition that the integrated Ricci scalar curvature with respect to

the metric induced on the event horizon is positive and the requirement that the horizon is

cobordant to a sphere, and study their implications for the possible topologies of the event

horizons in dimensions higher than four.

2. Hawking’s theorem revisited

In this section we will reconsider Hawking’s theorem determining the two-sphere topology

of the event horizon of four-dimensional asymptotically flat stationary black holes [1].

Following the steps of the proof in [1], we will find that also for asymptotically flat stationary

black holes in dimensions higher than four the integrated Ricci scalar curvature R̂ with

respect to the induced metric ĥ on the event horizon MH , is positive

∫

MH

R̂dŜ > 0 . (2.1)

The idea in the proof is to use the fact that the shear and divergence are zero at the

horizon, but the divergence is positive outside the horizon. In the next section we will

study the implications of (2.1) for the topology of the event horizon for higher-dimensional

asymptotically flat stationary black holes.

Consider a stationary n-dimensional space-time M with a metric g. Stationary means

that there exists a one-parameter group of isometries whose orbits are time-like curves. M

is required to be regular predictable, i.e. its future is predictable from a Cauchy surface [1].

Denote by (Y1, Y2) two future-directed null vectors orthogonal to MH , normalized as

Y a
1 Y2a = −1 . (2.2)

We take Y1 to be the future-directed null vector pointing out of the horizon, and Y2 to be

the vector pointing into the horizon. This still leaves us with the freedom to rescale

Y1 → eyY1, Y2 → e−yY2 . (2.3)

The (positive definite) induced metric on the horizon reads

ĥab = gab + Y1aY2b + Y2aY1b . (2.4)

– 2 –
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We now deform the event horizon by moving each point on it a parameter distance

ω along an orthogonal null geodesic with tangent vector Y a
2 . Following the same steps as

in [1] one derives the equation

dθ̂

dw
= pb;dĥ

bd −RacY
a
1 Y c

2 + RadcbY
d
1 Y c

2 Y a
2 Y b

1 + pap
a − Y a

1 ;cĥ
c
dY

d
2 ;bĥ

b
a , (2.5)

where θ̂ ≡ Y a
1 ;bĥ

b
a and pa = −ĥabY2c;bY

c
1 . Note that the last term on the RHS is zero on

the horizon, as the shear and the divergence of the null geodesics with tangent vector Y1

are zero there.

Using (2.3), pa → p′a = pa + ĥaby;b and we get

dθ̂′

dw′

∣

∣

∣

∣

∣

w=0

= pb;dĥ
bd + y;bdĥ

bd −RacY
a
1 Y c

2 + RadcbY
d
1 Y c

2 Y a
2 Y b

1 + p′ap
′a . (2.6)

Since y;bdĥ
bd is the laplacian of y (∗d∗dy) on the (n − 2)-dimensional horizon, we can use a

theorem of Hodge to set the first four terms on the RHS equal to a constant by a particular

choice of y, as follows: The other three terms (pb;dĥ
bd−RacY

a
1 Y c

2 +RadcbY
d
1 Y c

2 Y a
2 Y b

1 ) are a

0-form on the horizon, and their Hodge dual is a top-form. Any top-form φ on a connected

manifold can be written as

φ = cω + dψ , (2.7)

where ω is the volume form (normalized to unit integral) and c is the integral of φ over the

manifold. The theorem of Hodge states that for any form ψ, one can always find a form u

such that d ∗ du = dψ. In this case, we set y = −u. Then the sum of the first four terms

on the RHS is

c =

∫

MH

(pb;dĥ
bd −RacY

a
1 Y c

2 + RadcbY
d
1 Y c

2 Y a
2 Y b

1 )dŜ . (2.8)

The first term in the integral does not contribute because it is a divergence.

The Gauss-Godazzi equations, evaluated on the horizon (where the shear and diver-

gence are zero) yield

R̂ = Rijklĥ
ikĥjl = R− 2RijklY

i
1Y j

2 Y k
1 Y l

2 + 4RijY
i
1Y j

2 , (2.9)

where R̂ is the Ricci scalar associated to the induced metric, and the unhatted quantities

are the curvature tensors of the full metric. The integral is therefore equal to
∫

MH

(

−
1

2
R̂ +

1

2
R + RabY

a
1 Y b

2

)

dŜ . (2.10)

From the Einstein equations and the normalization Y1 · Y2 = −1 we have

1

2
R + RabY

a
1 Y b

2 = 8πTabY
a
1 Y b

2 ≥ 0 , (2.11)

where we used the dominant energy condition. Thus we have:

dθ̂′

dw′

∣

∣

∣

∣

∣

w=0

=

∫

MH

(

−
1

2
R̂ + 8πTabY

a
1 Y b

2

)

dŜ + p′ap
′a . (2.12)
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Suppose dθ̂′

dw′

∣

∣

∣

w=0
is positive everywhere on the horizon. We then take w′ to be a

small negative value, thereby looking at a surface slightly outside the horizon on which

θ̂′ is now negative. Such a surface is an outer trapped surface, which is forbidden in a

stationary regular predictable space-time satisfying the energy conditions. This is because

the area of the light-cone of such a surface always shrinks in any time evolution, and hence

cannot intersect future null infinity I+ (where the area would be infinite). Any region not

observable from I+ is by definition within the event horizon (and hence not “outer”).

If
∫

MH

(

−
1

2
R̂ + 8πTabY

a
1 Y b

2

)

dŜ , (2.13)

is positive, then it is possible to choose y such that dθ̂′

dw′

∣

∣

∣

w=0
is positive everywhere on the

horizon, since p′ lies on the horizon, and hence is a space-like vector with positive (length)2.

This leads to an outer trapped surface. Thus, this quantity must be negative or zero. The

dominant energy condition TabY
a
1 Y b

2 ≥ 0 implies then that

∫

MH

R̂dŜ ≥ 0 . (2.14)

If this integral equals zero, then in order to avoid outer trapped surfaces, TabY
a
1 Y b

2 = 0.

Thus, the sum of the first four terms on the RHS of (2.6) equals zero, and

p
′a

;bĥ
b
a + RabcdY1

aY2
bY1

cY2
d = 0 , (2.15)

on MH . Moreover, p
′a must be zero on the horizon since p

′ap′a is positive-definite. This

implies that each term in (2.15) must vanish independently on the horizon. We can then

choose the rescaling parameter y such that ĥa
bp

′a
;b −

1
2
R̂ = 0 on the deformed horizon

for small negative w′. This gives rise to a marginally outer trapped surface, which is also

forbidden.

Therefore, we arrive at the requirement (2.1), for black hole horizons in asymptotically

flat space of any dimensionality. Note, that for the theorem to hold we used the asymptotic

flatness, and it does not hold for instance in asymptotically AdS spaces where the dominant

energy condition does not hold.

3. The topology of event horizons in higher dimensions

In the previous section we found that for asymptotically flat stationary black holes, in both

the four-dimensional case and higher dimensions, the integrated Ricci scalar curvature with

respect to the metric induced on the event horizon MH is positive (2.1). When working

in four dimensions, where the event horizon is a two-dimensional manifold, this integral

is proportional to the Euler characteristic of the horizon manifold and implies that the

topology of the event horizon is that of the two-sphere S2.

In addition to (2.1) there is another constraint on the topology of the event horizon as

a consequence of the so-called topological censorship [2, 3]. Mathematically it requires that

horizon is cobordant to a sphere via a simply connected cobordism. For a d-dimensional
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horizon it means that there is a simply connected (d + 1)-dimensional oriented manifold

whose boundary is the oriented disjoint union MH ∪Sd. When working in four dimensions,

topological censorship also implies that topology of the event horizon is the two-sphere S2.

In the following we will use these two conditions and study their implications for the

topology of the event horizons in dimensions higher than four.

3.1 Five-dimensional black holes

Consider five-dimensional stationary black holes. Now the horizons are three-manifolds.

Thurston introduced eight geometric types in the classification of three-manifolds [6] (see

also [7]). 2 According to this classification there are eight basic homogeneous geometries,

up to an equivalence relation, called geometric types. Out of these types one constructs

geometric structures, which are spaces that admit a complete locally homogeneous metric.
3 Any compact and oriented three-manifold has a decomposition as a connected sum of

these basic geometric types.

We consider an orientable, connected, complete and simply connected riemannian

three-manifold X which is homogeneous with respect to an orientation preserving group

of isometries G. The eight geometric types classify (X,G). The equivalence relation

(X,G) ∼ (X ′, G′) holds when there is a diffeomorphism of X onto X ′, which takes the

action of G onto the action of G′. Out of these types one constructs spaces (geometric

structures) M ' X/Γ where Γ is a discrete subgroup of G. Here the action of Γ on X is

free (i. e. the action has no fixed points). M is locally homogeneous with respect to the

metric on (X,G). It is isometric to the quotient of X by Γ.

The first three types in the classification are based on the three constant curvature

spaces, the 3-sphere S3 (Spherical geometry), which has a positive scalar curvature R > 0

and isometry group G = SO(4), the Euclidean space R3 (Euclidean geometry) with R = 0

and isometry group G = R3 × SO(3) and the hyperbolic space H3 (Hyperbolic geometry)

with R < 0 and isometry group G = PSL(2, C). Of these three geometric types, only the

S3 type satisfies the condition (2.1) and is allowed as an horizon.

The next two types are based on S2 × R and H2 × R. Of these two geometric types,

only the S2 × R type satisfies the condition (2.1) and is allowed as an horizon. In this

allowed class we have S2 × S1.

The last three geometric types are Nil geometry, Sol geometry and the universal cover

of the Lie group SL(2, R).

The Nil geometry: this is the geometry of the three-dimensional Lie group of 3×3 real

upper triangular matrices of the form






1 x z

0 1 y

0 0 1






(3.1)

2This classification is called “Thurston Geometrization Conjecture”, and is claimed to have been estab-

lished by Perelman.
3M is called locally homogeneous if for any two points x, y in M there are neighborhoods of these two

points Ux, Uy and an isometry that maps (x, Ux) to (y, Uy).
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under matrix multiplication (Heisenberg group). We can think about Nil as (x, y, z) ∈ R3

with the multiplication

(x, y, z) · (x′, y′, z′) = (x + x′, y + y′, z + z′ + xy′) . (3.2)

The Nil metric (the left-invariant metric on R3) is given by

ds2 = dx2 + dy2 + (dz − xdy)2 , (3.3)

and has R = −1
2
. The Nil geometry type does not satisfy the condition (2.1) and is not

allowed as an horizon.

The Sol geometry: this is the geometry of the of the Lie group obtained by the semidi-

rect product of R with R2. We can think about Sol as (x, y, z) ∈ R3 with the multiplication

(x, y, z) · (x′, y′, z′) = (x + e−zx′, y + ezy′, z + z′) . (3.4)

The left-invariant Sol metric is given by

ds2 = e2zdx2 + e−2zdy2 + dz2 , (3.5)

and has R = −2. The Sol geometry type does not satisfy the condition (2.1) and is not

allowed as an horizon.

The ˜Sl(2, R) geometry: this is the geometry of the universal covering of the three-

dimensional Lie group of all 2×2 real matrices with determinant one Sl(2, R). The ˜Sl(2, R)

geometry type has R < 0. Thus, it does not satisfy the condition (2.1) and is not allowed

as an horizon.

We should note, that for the Nil, Sol and ˜Sl(2, R) geometries, we considered the natural

metrics which lead to locally homogeneous metrics on the event horizons.

Summary: we find that only two geometric types are allowed horizons in five dimensions:

the S3 geometric type and the S2 ×R geometric type. Indeed, black hole solutions of both

geometric types with compact event horizon topologies have been constructed, namely S3

and S2 × S1.

3.2 Six-dimensional black holes

Consider now six-dimensional stationary black holes in asymptotically flat space-times. We

will use topological censorship4 together with Friedman’s classification of four-manifolds

and Donaldson’s results on smooth four-manifolds, in order to classify possible event hori-

zons.

First we note that oriented cobordism from the event horizon to a four-sphere S4 exists

if and only if the horizon manifold MH has vanishing Pontrjagin and Steifel-Whitney

numbers [9]. In general, two smooth closed n-dimensional manifolds are cobordant iff

4In this section we will use topological censorship as oriented cobordism of MH and S4 without requiring

the five-dimensional manifold to be simply connected.
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all their corresponding Steifel-Whitney numbers are equal. If in addition we require the

cobordism to be oriented then (when n = 4k) their corresponding Pontrjagin numbers are

equal. In the following we will study the restriction that these set on the topology of the

four-manifold event horizons.

We start by considering simply connected event horizons, that is

Π1(MH) = 0 . (3.6)

This, in particular, implies that the cohomology groups H1(MH) (which is the abelianiza-

tion of the first homotopy group), and H3(MH) (by Hodge duality) vanish. One can use

the second cohomology group H2(MH) to define an intersection form

Q(α, β) =

∫

MH

α ∧ β , (3.7)

where α, β ∈ H2(MH). Q is the basic topological invariant of a compact four-manifold.

Note that, since the four-sphere S4 has zero second cohomology group, all its intersection

numbers vanish and

Q(S4) = (0) . (3.8)

Q is symmetric, non-degenerate with rank(Q) = b2 ≡ dim H2(MH), and can be

diagonalized over R. The signature σ of a four-manifold is defined by the difference of

positive and negative eigenvalues of Q. It can be expressed using the Hirzebruch signature

theorem as

σ(MH) =
1

3

∫

MH

p1 , (3.9)

where p1 is the first Pontrjagin class, which can be expressed using the Riemann curva-

ture as

p1 = −
1

8π2
TrR ∧ R . (3.10)

Since p1(S
4) vanishes, topological censorship implies then that the signature of Q(MH)

vanishes

σ(Q(MH)) = 0 . (3.11)

Mathematically, the signature is cobordant invariant.

Consider next the Stiefel-Whitney classes

ωi ∈ H i(MH , Z2) . (3.12)

For a compact, simply-connected orientable manifold ω1 = ω3 = 0. ω2 is the obstruction

to a spin-structure. Although ω2(S
4) = 0, oriented cobordism does not imply that the

second Stiefel-Whitney class of MH is zero. In other words, MH is not necessarily a spin

manifold.

The intersection form Q is actually defined on the lattice H2(MH , Z) and is a unimod-

ular (det(Q) = ±1) symmetric bilinear form over the integers. One says that Q is of even

type if

Q(α,α) ∈ 2Z (3.13)

– 7 –
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for all α ∈ H2(MH , Z). If ω2 = 0 then Q is even (as implied by Wu’s formula [9]). Thus,

event horizons which are spin manifolds are characterized as topological four-manifolds by

an intersection form Q(MH), which has vanishing signature and is of even type. When the

event horizons are not spin manifolds, ω2 6= 0 and Q(MH) is odd. In this case there are

two topological four-manifolds MH for a given intersection form. They are distinguished

by the Kirby-Siebenmann invariant, which is zero if MH ×S1 is smooth and one if MH ×S1

is not smooth.

In the following we will use combined results of Friedman’s classification and Donald-

son’s theorems (see [10, 11]). In the classification of possible intersection forms of MH we

distinguish two cases:

(i) Q(MH) is positive definite,

(ii) Q(MH) is indefinite.

Consider first the case when Q(MH) is positive definite. If Q(MH) is even then MH is

homeomorphic to the four-sphere S4 (see [10, corollary (2.27)]). If Q(MH) is odd then

MH is homeomorphic to a connected sum of CP 2’s. However, since Q(CP 2) = (1), the

signature of the connected sum in nonzero, and this is not an allowed horizon.

If Q(MH) is indefinite, then if it is even it can be written as (Hasse and Minkowski)

Q(MH) = aE8 + bH, a, b ∈ Z b 6= 0 , (3.14)

where E8 is the Cartan matrix of the Lie algebra E8 and

H =

(

0 1

1 0

)

, (3.15)

is the intersection form of S2 × S2. Since the signature σ(E8) = 8 and we require that

σ(Q(MH )) = 0 this implies that a = 0. The basic case is b = 1 and MH is S2 × S2. If we

take b > 1 we will get a connected sum of S2 × S2.

We should note, however, that by using connected sums there is a way to construct

other event horizons whose intersection form has vanishing signature and is of even type.

Consider for instance a K3. Its intersection form is Q(K3) = −2E8 + 3H. Since its

signature is nonzero, K3 is not an allowed horizon. However, if we take a connected sum

of the K3 and −K3, where −K3 has an opposite orientation we get an even intersection

form with vanishing signature, since Q(−K3) = −Q(K3).

If Q(MH) is indefinite and odd then MH is a connected sum of ±CP 2’s, where −CP 2

has the opposite orientation of CP 2 and Q(−CP 2) = −Q(CP 2) = (−1).

In the following we consider the possible event horizons up to the connected sum

operation.

Summary. We found that if the horizon is simply connected then it is homeomorphic to

S4 or to S2 ×S2, up to connected sum. Note that both S4 and S2 ×S2 are spin manifolds.

Consider next the case when MH is not simply connected. When Q(MH) is posi-

tive definite, one can relax the condition that Π1(MH) = 0 by requiring only that there

are no non-trivial homomorphisms of Π1(MH) into SU(2). This implies that every flat

– 8 –
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SU(2) bundle over MH is trivial and that H1(MH) being the abelianization of Π1(MH)

vanishes [10]. This allows Π1(MH) to be any finite simple nonabelian group. With this

relaxed condition we get four-manifold event horizons, whose universal cover is S4.

There are three other non-simply connected cases that we would like to explore. First,

consider T 4. Its intersection form is Q(T 4) = 3H and it is not excluded by the previous

discussion from being an event horizon. However, it does not satisfy our curvature condition

(2.1). Next consider S3 × S1. It is not ruled out by our analysis since it has vanishing

Pontrjagin and Steifel-Whitney numbers. Also, it satisfies (2.1). The last examples are

Σg × Σh, where Σg and Σh are Riemann surfaces of genus g and h respectively, and we

have assumed that the induced metric decomposes as a direct (unwarped) sum. Assuming

a product metric, the condition (2.1) reads

(g − 1)V ol(Σh) + (h − 1)V ol(Σg) < 0 . (3.16)

This can be satisfied by Σh = S2 and

g < 1 +
V ol(Σg)

V ol(S2)
. (3.17)

We cannot exclude, a priori, the possibility that the ratio of volumes in (3.17) can be as

large as we want and therefore all genera g are allowed. We encountered above the case

g = 0, namely the horizon S2 × S2. The intersection form Q(S2 × Σg) = H and it is not

ruled out by topological censorship.

Summary. We found that if the event horizon has vanishing first homotopy group then

it is homeomorphic to S4 or S2 ×S2. If the event horizon has finite simple nonabelian first

homotopy group and positive intersection form, then its universal cover is homeomorphic

to S4. We found other allowed non-simply connected cases S3 × S1 with first homotopy

group Z and S2 × Σg with first homotopy group5 Π1(Σg).

3.3 Comments on higher dimensions

In the following we will make some comments on the classification of the event horizons

above six dimensions. The event horizons MH are now closed differentiable n-manifolds

with dimension n higher than four, cobordant to the n-sphere Sn. If MH is homotopic to

Sn, then by the generalized Poincare conjecture (proven when n > 4) MH is homeomorphic

to Sn [12].

An important concept in differential topology is that of h-cobordism. Two cobordant

n-manifolds are h-cobordant if their inclusion map in the n + 1-dimensional manifold are

homotopy equivalent. The h-cobordism theorem [12] implies that if the horizon manifold

MH is h-cobordant to Sn then it is diffeomorphic to Sn. Note, however, that h-cobordism

is a stronger requirement than what is implied by topological censorship.

Let us introduce the concept of spin cobordism. Mathematically, it requires in our

context the existence of an (n + 1)-dimensional compact spin manifold, whose boundary

5Π1(Σg) is generated by a1, b1, . . . , ag, bg with the relation a1b1a
−1

1
b−1

1
. . . agbga−1

g b−1

g = 1.

– 9 –
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is the oriented disjoint union of Sn and MH . In particular, MH is a spin manifold whose

spin structure is induced from that of the (n + 1)-dimensional manifold. The concept

of spin cobordism may be relevant, since we are mainly interested in higher-dimensional

black holes solutions to supergravity equations as the low energy effective description of the

superstring equations. Therefore, we would like the geometry to accommodate fermions.

Note, that in the classification of the previous section, spin cobordism would have implied

that the intersection form is of even type.

There are several useful results that help in the classification of the event horizons of

dimensions higher than four:

• n = 5 For five-dimensional manifolds with vanishing second Steifel-Whitney class ,

there exists a classification of all possible closed simply connected manifolds [12]. The

manifolds are in 1-1 correspondence with finitely generated abelian groups.

• n = 6 Six-dimensional closed manifolds with vanishing first and second homotopy

groups Π1 = 0 and Π2 = 0 (2-connected) are homeomorphic to S6 or connected sum

of copies of S3 × S3 [12].

• n = 2k There are general results which enumerate the (k−1)-connected 2k-manifolds

(Wall) [12].

• n ≥ 5 : If MH is n-dimensional compact, simply connected and spin cobordant to

Sn, it is obtained from Sn by doing surgery on spheres of codimension greater than

two [13].

We will leave the complete analysis of the possible topologies of event horizons of

stationary black holes in asymptotically flat space-times with dim MH > 4 to the future.
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